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ABSTRACT
Peer-to-Peer (P2P) desktop grid computing systems circum-
vent the performance bottleneck and limited scalability of
centralized Grid architectures resulting in a massively scal-
able and robust system. We have designed a set of protocols
that implement a distributed, decentralized desktop grid via
P2P techniques. Incoming jobs having different types of re-
source requirements are matched with system nodes through
proximity in an N-dimensional resource space.

In this paper, we address problems that arise from static
load balancing mechanisms for assigning jobs to nodes that
can arise for various reasons, including the heterogeneity of
the available nodes or the jobs to be run, and from stale in-
formation in the P2P system. We greatly improve upon
our prior work by providing lightweight yet effective dy-
namic load balancing mechanisms to overcome load imbal-
ances caused by the limitations of the initial static job as-
signment scheme. Unlike other systems, we can effectively
support resource constraints of jobs during the course of
redistribution since we simplify the problem of matchmak-
ing through building a multi-dimensional resource space and
mapping jobs and nodes to this space. Throughout exten-
sive simulation results, we show that dynamic load balanc-
ing makes the overall system more scalable, by improving
system throughput and response time with low additional
overhead.
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1. INTRODUCTION
Peer-to-Peer (P2P) desktop grid computing systems cir-

cumvent the performance bottlenecks and limited scalability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CAC ’13 August 05-09 2013, Miami, FL, USA
Copyright 2013 ACM 978-1-4503-2172-3/13/08 ...$15.00.

of centralized Grid architectures [18, 31] such as Condor [30]
or BOINC [1]. Conventionally, these kinds of middleware
systems have effectively supported High-Throughput Com-
puting (HTC) [19] consisting of running many loosely-coupled
tasks that are independent (there is no communication needed
between them) but require a large amount of computing
power during relatively a long period of time. However, as
the number of jobs and the complexity of scientific appli-
cations increase, it becomes a challenge to solve the given
scientific problem within a reasonable amount of time. Also,
recent emerging applications requiring millions or even bil-
lions of tasks to be processed with relatively short per task
execution times have led the traditional HTC to expand into
Many-Task Computing (MTC) [22]. These applications from
a wide range of scientific domains (e.g., astronomy, physics,
pharmaceuticals, chemistry, etc.) often require a very large
number of tasks (from tens of thousands to billions of tasks),
and have a large variance of task execution times (from hun-
dreds of milliseconds to hours) [22].

Therefore, to effectively support most challenging scien-
tific applications (from HTC to MTC), first, we need to build
a system that can scale out to harness hundreds of thousands
of computing resources to support millions or even billions
of tasks. Second, such a system must be robust enough to
provide high availability to the scientific users who want to
process a large number of jobs across multiple resources (no
single point of failure). Third, the system must incorporate
the heterogeneity in the running times of jobs and in the
resource capabilities of the nodes so that it can dynamically
adjust to the load distribution changes.

We believe that the P2P desktop grid can be a viable
choice for such a scalable and robust system that can process
a tremendous number of tasks by harnessing vast amounts of
computing resources. In this paper, we present our lightweight
and effective autonomic load balancing mechanisms that can
redistribute jobs in a completely decentralized fashion in-
corporating job constraints, and address the load imbalance
issues arising from the heterogeneity in the execution times
of jobs and in the resource capabilities of the nodes. In our
P2P desktop grid system [15, 16, 17], matching jobs to re-
sources (matchmaking) are based on proximity between job
and node characterizations in an N-dimensional Content-
Addressable Network (CAN) [25]. In that approach, each
resource type corresponds to a distinct dimension.

Unlike other P2P-based resource management schemes [11,



28, 33, 34], we can effectively support resource constraints
of jobs during the course of redistribution since we sim-
plify the problem of matchmaking through building a multi-
dimensional resource space and mapping jobs and nodes to
this space. As the number of various scientific applications
increases, with high probability, it will be crucial to sup-
port resource requirements of running jobs on top of het-
erogeneous computing infrastructures. Also, our system can
give an insight to decentralize existing job scheduling sys-
tems such as Falkon [23, 24] or MyCluster [32] by effectively
building a self-organizing pool of schedulers connected via
a P2P network which can provide more robust and scalable
dynamic load balancing mechanisms.

The rest of the paper is structured as follows. Section 2
describes our goals and prior work for matching jobs to re-
sources based on CAN. In Section 3, we describe our tech-
niques to improve the overall throughput of our CAN-based
system by employing dynamic load balancing schemes and
present our simulation results in Section 4. Section 5 presents
related work and we conclude and discuss future directions
in Section 6.

2. BACKGROUND
A general-purpose desktop grid system must accommo-

date various scenarios of node capabilities and job require-
ments. Nodes may be added one at a time over time, so that
their resource capabilities are heterogeneously distributed,
or they may be added as sets of homogeneous clusters. Like-
wise, jobs may be relatively unique in their requirements, or
part of a series of requests with similar or identical require-
ments (e.g., a simulation sweeping over a large set of param-
eter combinations). A good matchmaking algorithm must
be expressive enough to fully describe both minimum job re-
quirements and disparate nodes. Further, such an algorithm
should evenly balance load across system nodes, and find a
valid assignment for every job, if such an assignment exists.
Also, resources should not be wasted. All other issues be-
ing equivalent, a job should not be assigned to a node that
is over-provisioned with respect to that job. Finally, the
matchmaking process should not add significant overhead
to the cost of executing a job.

2.1 System Overview
Our system [15, 16, 17] is based on a distributed hash ta-

ble (DHT) called Content-Addressable Network (CAN) [25]
and we found that it provides a good framework for a decen-
tralized desktop grid. A CAN is a type of structured DHT
that maps nodes and jobs into a multidimensional space.
In our case, nodes are mapped by their resource capabili-
ties (each resource type is a separate dimension), and jobs
by their resource requirements (constraints). The seman-
tics of routing in a CAN places a job at a node that is
minimally capable of running that job. The task of choos-
ing a node to run the job proceeds from that point. All
jobs in the system are independent which implies that no
communication is needed between them. This is a typical
scenario in a high-throughput computing environment, en-
abling many independent users to submit their jobs to a
collection of node resources in the system, or embarrassingly
parallel (sometimes called bags of tasks) workloads. Indeed,
Iosup et al. [13, 14] found that a high percent of Grid appli-
cations still employ an embarrassingly parallel model based
on their analysis on the characteristics of traces of real Grid

environments.
The steps involved in executing a job are as follows:

1. A client inserts a job into the system via some (arbi-
trary) node, called the injection node.

2. The injection node initiates CAN routing of the job,
which ultimately places it at the job’s owner node.

3. The owner node begins the matchmaking process, in
which it looks for a lightly loaded node satisfying all
of the job’s requirements. This is the run node.

4. The run node places the job into a FIFO queue for
eventual processing. Periodic soft-state heartbeat mes-
sages between the run and owner nodes ensure that
both are still alive. Failure of either node prompts the
other to initiate selecting a replacement.

5. Once the job finishes, the run node returns the results
to the client and informs the owner node (to terminate
the heartbeats).

As nodes are mapped into the CAN space, each is assigned
a non-overlapping hyper-rectangular zone. Each node main-
tains a list of neighbors, defined as those nodes whose zones
abut its own. CAN routing is a greedy algorithm, in which
a node passes a message (containing, for example, a job pro-
file) to the adjoining zone that minimizes the distance to the
message destination.

We augmented the basic matchmaking approach in two
ways. First, the basic CAN procedure encounters difficulties
when many nodes have similar, or even identical, resource
capabilities. Since the coordinates of a node are defined by
its resource capabilities, identical nodes are mapped to the
same point in the CAN volume. This creates a problem
for the one-to-one mapping of nodes to zones. Additionally,
many jobs might have very similar requirements. For exam-
ple, many jobs will likely be inserted into the system with
no resource requirements at all specified. In this case, all
those jobs are mapped to the single node that owns the cor-
responding zone. We address this problem by augmenting
both job and node descriptions with a randomly assigned
value in a virtual dimension [16]. The virtual dimension en-
sures that all jobs and nodes are unique, and helps balance
load even when the actual jobs and nodes are similar.

Second, we improve load balancing for executing jobs by
pushing jobs into underloaded regions of the CAN space [15].
Nodes periodically send load information towards the origin
in each CAN dimension. This information is aggregated at
each step, resulting in each node having partial information
about load in all regions of the CAN space containing nodes
more capable,– exactly those nodes that are also able to run
the node’s jobs. In times of high load, a node can therefore
push jobs towards regions of high capability and low load,
based solely on local information.

We also integrate categorical resource constraints [17] which
require a singular value for that resource, such as a specific
type of operating system or processor, as opposed to the
minimum requirements for a continuous resource constraint
(e.g., memory or disk size, or CPU speed). The basic idea
of our approach is to divide the CAN space into multiple
disjoint sub-spaces where in each sub-space all categorical
resource types are exactly the same, and then provide an effi-
cient mechanism to connect the multiple sub-spaces through



virtual peers. With this design, each physical peer only is
responsible for the exact region of the CAN space to which
it belongs, with respect to its categorical resource specifi-
cations, and the rest of the space (unoccupied spaces) is
covered by virtual peers. Since a virtual peer is not a physi-
cal node, we map each virtual peer to physical peers (called
manager nodes). For efficient management of virtual peers
and failure recovery, we transform all categorical resource
types into a single dimension using a Hilbert Space-Filling
Curve [27]. Load information within each sub-CAN is then
homogeneous and can be disseminated efficiently, so that
matchmaking is efficient for any combination of categorical
and continuous constraints.

3. DYNAMIC LOAD BALANCING
One way the CAN-based matchmaking techniques bal-

ance load across run nodes is through the use of randomly
generated virtual dimension values for both node capabili-
ties and job requirements, which acts to distribute clusters
of nodes and jobs through the CAN space. They also use
the job pushing mechanism during matchmaking to balance
load across all nodes that are capable of running the job.
However, all of our prior job load balancing mechanisms are
based on a static allocation of jobs to nodes, and do not al-
low jobs to be migrated to run on another node after it has
been assigned to an initial run node.

Static load balancing has drawbacks, both because of het-
erogeneity in the running times of jobs and in the resource
capabilities of the nodes. Even if the load balancing mecha-
nism initially assigns the jobs uniformly across available sys-
tem resources, as time passes the overall load distribution
may change because some nodes run the allocated jobs much
faster than others (or some jobs just have relatively short
running times). Therefore, the overall throughput of the en-
tire system may heavily depend on its slowest nodes. Also,
we use the number of jobs in the queue at a run node as the
metric to determine the best run node for a job when there
are multiple candidates capable of running the job. This
is because it can be very difficult in general to predict the
actual running time of a job on a given node, unless clients
provide such information and it is accurate for all node types
in the system. However, the actual queuing time for a job is
not necessarily directly proportional to the number of jobs in
the queue, since the job running times can vary widely [22].
A final source of uncertainty comes from the decentralized
nature of the P2P desktop grid system. All matchmaking
and load balancing decisions are made based on only local
information that is propagated over time as part of the ba-
sic CAN DHT maintenance algorithms. Therefore, if jobs
are arriving faster than load information propagates, many
matchmaking decisions will be made based on stale load in-
formation, which can result in load imbalances across run
nodes.

To address these problems, we have designed autonomic
and dynamic load balancing mechanisms that can effectively
redistribute the jobs (with resource constraints) across run
nodes as needed, to improve overall system throughput. How-
ever, job redistribution (migration) has both benefits and
costs. Job migration cost may be higher in a P2P system
that spans a wide-area network compared to a local area
network, since the job profile has to be transferred, includ-
ing all input data. For jobs that do not run for a long time,
the migration cost may be very high compared to the job

execution time. Jobs that run for hours or days can greatly
benefit from migration, rather than sitting in a queue for a
long time. Therefore, long running jobs having minimal data
communication cost are most appropriate for job migration.
Most long running desktop grid applications, such as those
performed by SETI@Home [3] or Folding@Home [10], are in-
deed long running [33] and are the main target applications
for such systems. However, for those applications generat-
ing a very large number of jobs with relatively short per task
execution times (as in MTC applications [22]), our dynamic
load balancing schemes can still work since many tasks will
be waiting for execution due to lack of enough resources to
support them and a large variance in task execution times
will inevitably skew the overall load distribution.

We choose to only employ the job migration techniques to
jobs that are not currently running, but are currently wait-
ing in a queue on a run node, since migrating running jobs
requires complex mechanisms for state storage and resuming
the job. Also, in our system, any input data files for a job
are transferred to the run node only when the job actually
starts running. This means that by targeting only jobs wait-
ing in the queue, the job migration cost is low since we only
need to migrate the job description file, which is quite small.
We now present our dynamic load balancing schemes, based
on either pulling jobs to lightly loaded node or pushing jobs
away from heavily loaded nodes.

3.1 Models for Migrating Jobs
In the push model, a node that has a disproportionate

number of jobs in its queue can push jobs to its neighboring
nodes in the CAN, while in the pull model a node that be-
comes idle can pull jobs from its more heavily loaded neigh-
bor nodes. However, the semantics of the matchmaking pro-
cess and the CAN organization can make this procedure
difficult, since we must ensure that a node receiving
a migrated job meets the resource requirements of
the job. Also, it is desirable to perform job redistribution
in a completely decentralized, local fashion to avoid multiple
retrials of the entire matchmaking process just to migrate
jobs.

Decentralized dynamic load balancing can be done using
the neighbor state information that must be maintained for
connectivity in the CAN space. From the perspective of
a node, its neighbor nodes are good candidates for running
jobs in its queue, since they are likely to meet the constraints
of those jobs, due to the assignment of resource types to the
different CAN dimensions. Periodically, and independently
of when other nodes send updates, a node sends its own
current information (such as zone, coordinates, etc.) and
the same information that it currently has for its neighbors
in the CAN space to all its neighbors [25]. Therefore, each
node maintains both the state of its direct neighbors and
also state for neighbors of neighbors (indirect neighbors).
This information is required to enable the basic CAN fail-
ure recovery mechanism, where the node that ends up taking
over the zone vacated by a failed neighbor can discover the
neighbors of the lost zone through its indirect neighbor in-
formation [25]. In our desktop grid CAN, additional load
information (i.e., the current size of the job queue) is pig-
gybacked onto the periodic neighbor updates so that each
node can estimate the current load of its direct and indirect
neighbors.

Based on load information about its neighbors, a node pe-



riodically performs dynamic load balancing, but at a longer
interval than for updating the neighbor state information.
That is because job redistribution should not add substan-
tial overhead, and also because the system targets jobs that
usually run long enough so that relatively infrequent job re-
distribution will be adequate to smooth out any load imbal-
ances caused by the static load balancing scheme and widely
varying job run times.
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Figure 1: Models for Dynamic Load balancing: DNi and
IDNi denote direct and indirect neighbors, respectively.

PULL Model.
Figure 1 shows two different approaches for the dynamic

load balancing of jobs, a pull model (Figure 1a) and a push
model (Figure 1b). In the pull model, whenever a node
PL becomes idle (or very lightly loaded), it tries to pull
jobs from its more heavily loaded neighbors (both direct and
indirect). In Figure 1a, node PL is performing dynamic load
balancing and has twelve neighbors that can be considered.
PL sorts those neighbors according to their job queue sizes
(propagated through the neighbor updates), and selects the
one that has the longest job queue size (but it must be longer
than PL’s job queue). PL then sends a message to that
neighbor to request a job (Request in the Figure 1a).

One important constraint is that PL must be able to run
the job migrated from its neighbor (i.e., it should meet the
resource requirements of the job). For that reason, one ap-

proach for the pull model is that PL contacts only neighbors
that can be covered by its own coordinates (i.e., each coordi-
nate of a neighbor is less than or equal to the corresponding
coordinate of PL). For example, in Figure 1a, nodes DN2,
DN4, IDN4, IDN6 and IDN8 are covered by the coordinates
of PL, which means that all jobs in these neighbors are guar-
anteed to be able to run on PL due to the semantics of the
multi-dimensional CAN space. While this scheme guaran-
tees meeting the job constraints, it restricts the flow of job
migration to only one direction (always from regions closer
to the CAN origin than PL). However, the static load bal-
ancing mechanism, which pushes jobs away from the node
that has the minimum capability to run the job (i.e. meet its
resource requirements), may push a job to nodes with higher
resource capabilities [15]. That means that neighbors that
cannot be covered by PL (the other 7 nodes in Figure 1a)
may indeed have jobs that PL can run. Therefore, in our pull
model node PL contacts one of its neighbors based only on
their job queue sizes, ignoring their CAN coordinates. How-
ever, when the node PL contacts its most heavily loaded
neighbor, that neighbor may not have any jobs waiting in
its queue that can be run on PL. In this case, that neighbor
simply sends a reject message to PL, and PL tries to pull a
job from the next most heavily loaded neighbor node (Reject
in Figure 1a). Although this may require several attempts to
contact neighbors of PL, the overhead is not too high since
the number of neighbors is limited and PL always contact
more heavily loaded neighbors than itself (we investigate the
overhead incurred by the pull model in Section 4).

Finally, if PL finds an appropriate node for migration,
a job that can be run on PL (selected by searching from
the head of the job queue on the node sending the job) is
transferred to PL and inserted into PL’s job queue (Send in
Figure 1a). To ensure fairness among jobs in the system, we
sort all jobs in a job queue based on their submission times
so that migrated jobs may be inserted anywhere in a job
queue, not just the end.

PUSH Model.
In the push model whenever a node PS becomes heavily

loaded (i.e. its job queue gets long enough), the node at-
tempts to push one or more of its queued jobs to its more
lightly loaded neighbors (both direct and indirect), as seen
in Figure 1b. PS sorts those neighbors according to their job
queue sizes and picks the one that has the shortest queue
size (and the job queue size is shorter than PS’s). PS then
contacts that neighbor to request job migration. However,
unlike the pull model, node PS never has to make multiple
attempts to find a neighbor that can run one of the wait-
ing jobs in its queue. That is because all of nodes that are
candidates for job migration from node PS are neighbors of
PS, so PS can determine whether a neighbor can run the
migrating job before making the request based on the job
coordinates (resource requirements) all being less than or
equal to the corresponding neighbor coordinates (resource
capabilities). Therefore, when PS sorts its neighbors it can
safely exclude nodes that cannot run any of the jobs in its
queue. This keeps the number of messages the push model
requires for performing dynamic load balancing mechanism
low, as will be seen experimentally in Section 4.

Diffusion of Load.
In both the pull and push models, one important issue is



to determine the idleness of a node, since jobs should al-
ways migrate from heavily loaded nodes to idle ones. If a
node N is free (no running or waiting jobs in its queue), we
can definitely regard N as an idle node. Therefore, in this
case, node N should always try have a job migrated from
one of its neighbors (through either the pull or push mech-
anism). However, what should happen if N has only one
or two jobs in its queue? Note that we calculate job queue
size as the number of running and waiting jobs in the queue
(e.g., a free node has a job queue size of zero). We could
use a threshold to determine the idleness of node N so that
if N has fewer jobs in its queue than the threshold it is re-
garded as an idle node. However, selecting a good threshold
value that is independent of the job characteristics can be
very difficult. Therefore, another possibility is for a node N
to be regarded as idle if and only if it is free (zero queue
length). So only free nodes will get jobs migrated from its
more heavily loaded neighbors. However, this scheme also
may not work well in the decentralized P2P grid environ-
ment, because a node shares migratable jobs only with its
neighboring nodes. However, if only free nodes are allowed
to migrate jobs, that will only balance load in the regions
in the CAN space near free nodes, so that jobs may not
be propagated over longer distances in the CAN. Therefore,
even though all operations are performed locally, a better
method would gradually propagate the effects of job migra-
tions so that loads are diffused into the entire CAN space.

To achieve that behavior, we employ a probabilistic ap-
proach for each node to determine whether or not it will ac-
cept a migrated job from its neighbors. A node N accepts a
job migration request with a probability of 1

(1+N′s job queue size)
.

Therefore, if a node N is free, it will always accept migrated
jobs from its neighbors. Also, even if N has some jobs in
its queue, it may get additional jobs migrated from more
heavily loaded neighbors. This simple but effective scheme
allows jobs to gradually move from heavily loaded regions to
lightly loaded regions in the CAN space, resulting in global
diffusion of loads across all available nodes. Note that for all
job migrations, the new node must always meet the resource
requirements of a migrated job.

Choosing the Best Node for Migration.
It is possible for a node N to receive multiple job migration

requests from multiple neighbors at about the same time.
For the pull model, that is most likely to occur at the locally
most heavily loaded node, and for the push model the most
lightly loaded neighbor is likely to have this problem. The
solution is for N to decide which requesting node finally will
get the job. The choice could be done randomly or in order
of the requests, but we have designed a method tailored to
the characteristics of the load balancing algorithms. For
the pull model, if a node receives multiple requests for job
migration, it selects the lightest loaded neighbor and sends a
job to that node. For this purpose, whenever a node requests
a job migration, it includes its current job queue size in the
message. Similarly, for the push model if a node receives
multiple requests for job migration, it selects its most heavily
loaded neighbor. The final step of job migration is to notify
the owner node for the migrated job about the migration,
so that it can keep track of the the run node for the job (as
shown in Figure 1).

4. EVALUATION

We use synthetic job and compute resource (node) mixes
to simulate the behavior and measure the performance of
our CAN-based P2P desktop grid system. The resource
mixes are modeled after common environments the system
runs in (a combination of workstation clusters and desktop
machines), and from a variety of job mixes obtained from
our astronomy collaborators. We therefore generated a vari-
ety of workloads, each describing a set of nodes and events.
Events include node joins, node departures (graceful or from
a failure), and job submissions. The events are generated us-
ing a Poisson distribution with an arrival rate of 1/τ (τ is
the average event inter-arrival time).

We used five different resource types for nodes and jobs:
CPU architecture, operating system type, CPU speed, mem-
ory size, and disk space. For the categorical resource types
(architecture and operating system), the nodes and jobs used
four different combinations (sub-CANs). Nodes (total 1000
nodes) and jobs (total 5000 jobs) have one of those com-
binations for their resource specifications and constraints,
respectively. We generate continuous resource type values
(CPU, memory and disk) for nodes and jobs based on a
clustering model, as described in our earlier work. The clus-
tering model emulates the resources available in a heteroge-
neous environment, where a high percentage of nodes have
relatively small values for their resource types and a small
fraction of nodes have larger values for their resource types
(as in Zhou et al. [33]). We used ten different sets of ho-
mogeneous clusters having different continuous resource ca-
pabilities, and the resource requirements for jobs are also
clustered (i.e., multiple jobs have similar or even identical
requirements).

If we designate the the amount of work for a job j by W,
then to run the job j a node must execute for W time units if
it has exactly the same CPU speed as specified by the job j’s
minimum CPU requirement. To model the actual running
time of a job on the node to which it is assigned, we divide
W by the node CPU speed (relative to some baseline node
CPU speed). Finally, for network communication cost, we
model the latency of a packet between any two nodes by an
exponential distribution with a mean of 50 milliseconds.

In these experiments, we varied two values, τ for jobs and
the distribution of job running times. We used two different
τ values: 1 and 4 seconds respectively (denoted as heavy
and light workloads). With τ set to 4 seconds, the overall
system stays in a steady state, where the rate for incoming
jobs and finishing jobs is approximately the same. How-
ever, if τ decreases to 1 second, the system becomes heavily
loaded and will eventually saturate all available nodes, re-
sulting in indefinite growth of the node job queues. That
scenario shows the behavior of our algorithms for dynamic
load balancing in a very heavily loaded environment, where
the static matchmaking decisions may be made based on
stale information. Also, we used two different distributions
for job running times, uniform and normal. In the uniform
model, a job running time is generated uniformly at ran-
dom from between 30 and 90 minutes and an average of 60
minutes. We also tested the algorithms with normally dis-
tributed job running times, with a mean of 60 minutes and a
standard deviation of 20 minutes. This scenario shows how
the algorithms are affected by non-uniformity in job run-
ning times, and also shows the effects of situations where
the number of jobs in a node’s queue is not a good estimate



for the queuing time of a newly assigned job. However, due
to the page limit, in this paper, we only present results of
uniformly distributed job running times.

Our metrics are wait time, which is the amount of time be-
tween when a job is injected by a client and when it actually
starts running, and the rate of dynamic load balancing mes-
saging, which is the number of messages required to perform
the dynamic load balancing scheme per minute. Wait time
includes the time to perform the matchmaking algorithm
and the time spent waiting in the job queue of a run node
before a job is executed. Wait time reflects both protocol
overhead and the quality of the matchmaking results, i.e.,
load balancing. Since the matchmaking cost in our system
is very small compared to the job running time [15, 16, 17],
the majority of wait time is composed of the queuing time.
The number of dynamic load balancing messages shows the
overhead for executing the job redistribution algorithms in
a decentralized fashion.

We compare the basic CAN approach that only uses the
static job load balancing scheme (labeled as CAN-Vanilla
in the figures) with the improved CAN approach that uses
dynamic load balancing either with the job pull model (CAN-
PULL) or the job push model (CAN-PUSH). Both CAN-
PULL and CAN-PUSH perform the dynamic load balancing
algorithms every five minutes, which is much longer than
the 30 second interval between neighbor updates for CAN
maintenance. To see how well the dynamic load balanc-
ing schemes work, we also show results for a centralized
scheme (CENTRAL) that has complete information about
the job queue status of all nodes. Similar to our dynamic
load balancing mechanisms, CENTRAL periodically redis-
tributes jobs across all nodes in the system. Such a scheme
would be very expensive to implement with a distributed set
of nodes, but serves as a target for achieving the best possi-
ble load balance from an online matchmaking algorithm.

4.1 Experimental Results
We discuss the results for uniform job running time dis-

tributions, seen in Figures 2a and 2b. The figures show that
the dynamic load balancing schemes (CAN-PULL and CAN-
PUSH) greatly improve load balance compared to CAN-
Vanilla, and show very competitive performance even com-
pared with CENTRAL. Both CAN-PULL and CAN-PUSH
not only remove the high end of the wait time distribution
compared to CAN-Vanilla, meaning that the longest wait-
ing jobs wait much less, but also shift the CDF up and to
the left, which means that they achieve better distribution
of jobs across available nodes compared to CAN-Vanilla.
However, under the heavy workloads shown in Figure 2b,
all of the matchmaking frameworks show longer job wait
times compared to the lighter workloads. More specifically,
CAN-PULL and CAN-PUSH decrease the average job wait
time to 23% and 36% that of CAN-Vanilla, respectively,
while CENTRAL decreases that metric to 22% that of CAN-
Vanilla. For the heavy workload, CAN-PULL, CAN-PUSH
and CENTRAL decrease the average wait times to 60%,
68% and 44%, respectively, that of the average job wait
time for CAN-Vanilla. Therefore, by employing dynamic
load balancing mechanisms, we can improve load balance
for executing jobs dramatically compared to CAN-Vanilla,
and shows performance close to that of CENTRAL, which
has a global view of the entire set of nodes.

All the benefits from dynamic load balancing come with

additional cost (overhead), since redistribution of jobs oc-
curs periodically. However, as we can see from Figure 2c
and 2d, the networking requirements to perform dynamic
load balancing are very low, totaling only a few messages
per minute. The messages counted include all those needed
to perform the dynamic load balancing algorithms, which
include contacting neighbor nodes to request a job migra-
tion, actually migrating a job, and notifying the job owner
node of the new run node (as described in Section 3.1). One
important characteristic about Figure 2c and 2d is that the
graphs show the number of messages over the entire simu-
lation, which means that for all one minute intervals simu-
lated, there was no node in the system that processed more
than 12 dynamic load balancing messages (for CAN-PULL).
When we measure the total size of the dynamic load bal-
ancing messages across all the workloads, CAN-PUSH and
CAN-PULL send up to 300 bytes and 600 bytes per minute
respectively. As was described in Section 3.1, CAN-PULL
generates more messages than CAN-PUSH, since a node can
perform multiple retrials to contact its neighbors to find a
job that can be run on that node. In results not shown,
we also measured the average number of messages sent in
the CAN per minute during the entire simulation and CAN-
PULL on average causes only 0.3% of all messages (meaning
the vast majority come from other sources, including CAN
maintenance and matchmaking), while CAN-PUSH causes
only 0.2% of the total number of CAN messages.

Another interesting result is that, across all of workload
combinations (different loads and job running times), CAN-
PULL provides better load balance (measure by job wait
times) than CAN-PUSH. We believe that is because in CAN-
PULL, idle (or comparatively lightly loaded) nodes aggres-
sively pull jobs from their more heavily loaded neighbors,
compared to the idle nodes in CAN-PUSH passively accept-
ing jobs from their neighbors. However, since CAN-PUSH
has the advantage of lighter overhead (counting messages)
compared to CAN-PULL, both dynamic load balancing ap-
proaches have their strengths and weaknesses. So if the tar-
get system can handle some extra messages, CAN-PULL is
the best choice. Otherwise CAN-PUSH should be used to
perform dynamic load balancing, since it can still greatly im-
prove overall system throughput compared to CAN-Vanilla,
which does not do any dynamic load balancing.

5. RELATED WORK
Research such as [8, 20] employs a Time-To-Live (TTL)

mechanism in an unstructured DHT to locate and allocate
resources in a Grid environment. TTL-based mechanisms
are relatively simple and effective ways to find a resource
that meets the job requirements, but such mechanisms may
fail to find a resource even though one exists somewhere in
the overlay network.

Similar to our approach, research such as [9, 12, 21] en-
codes static or dynamic information about computational
resources using a DHT hash function for resource discov-
ery. However, a small fraction of the nodes can end up
owning a large fraction of the resource information, espe-
cially if there are many resources that have very similar (or
identical) capabilities. Also, simple encoding of resource in-
formation cannot effectively avoid selecting resources that
are over-provisioned with respect to the jobs.

Balanced Overlay Networks (BON) [7] encode informa-
tion about each node’s available computational resources,
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Figure 2: Performance Results with Uniformly Distributed Job Running Times: In the figures the Y-axis does not start from
0%, to show the results more clearly

resulting in a self-organized network that allows jobs to be
assigned to free nodes via short random-walks. Similarly,
Awan et al. [4] proposed a distributed cycle sharing system
that utilizes a large number of participating nodes to achieve
robustness through redundancy on top of an unstructured
P2P network. However, the job allocation model in these
systems does not consider the resource requirements of the
jobs nor the varying resource capabilities of the nodes.

Dynamic load balancing concepts are widely used for dis-
tributing loads in locally distributed systems [28] or for thread
migration policies [5]. Zhou et al. [33] incorporate dynamic
load balancing by employing two distinct scheduling steps:
initial scheduling and later migration. A client initially sched-
ules its jobs on a host in the current night-time zone and
when the host machine is no longer idle the job is migrated
to a new night-time zone. However, they do not allow users
to specify resource requirements for the jobs. Therefore, it
is a much simpler model than in our design, where a node
receiving a migrated job must be able to meet resource con-
straints of the job. Other researches [11, 34] also inves-
tigated dynamic load balancing techniques over structured
DHTs, however, they cannot support job constraints during
the course of job migrations. The Condor system uses pre-
emptive resume scheduling, which can migrate jobs before
they complete (preemption) in order to meet the needs of
system participants (such as owners, users and system ad-
ministrators) or to deal with the inevitable heterogeneity of

available computers [26]. However, Condor is based on a
centralized server-client architecture that limits its scalabil-
ity and robustness to failure, compared to our decentralized
P2P desktop grid system.

6. CONCLUSION
In this paper, we have described a P2P desktop grid sys-

tem that can efficiently match resource requirements for
incoming jobs, while simultaneously balancing load among
multiple candidate nodes. By introducing lightweight yet ef-
fective dynamic load balancing schemes, we have shown ex-
perimentally that our system can overcome the load imbal-
ances that arise from the heterogeneity of node capabilities
and job running times and also from stale load information.

Desktop grid computing systems such as BOINC [6] or
SZTAKI Desktop Grid [29] have still been actively devel-
oped and used for supporting various challenging scientific
applications. For example, the estimated performance of
last 48 hours in SZTAKI was 2046.07GFlop/s with peak
performance of 3.4TFlop/s by harnessing 100,000 comput-
ing hosts over Internet [29]. We believe that this form of
Volunteer Computing [2] will continue to evolve and be a
viable choice for supporting most challenging scientific ap-
plications consisting of hundreds of thousands of bags of
tasks. Our P2P desktop grid system can give an insight into
the research community not only by improving the current



centralized desktop grid architectures but also by applying
our techniques to wherever autonomic load balancing mech-
anism becomes crucial to effectively support a very large
number of jobs over heterogeneous computing resources.
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