HTCaaS: A Large-Scale High-Throughput Computing by Leveraging Grids, Supercomputers and Cloud

Seungwoo Rho, Seoyoung Kim, Sangwan Kim, Seokkyoo Kim, Jik-Soo Kim and Soonwook Hwang
Supercomputing Center at the Korea Institute of Science and Technology Information (KISTI)

High-Throughput Computing
- Many loosely coupled tasks requiring a large amount of computing power
- Independent, sequential jobs that can be scheduled on many different computing resources
- Growing in the number of jobs and complexity drives HTC area into Many-Task Computing (MTC)

Harnessing as many computing resources as possible is inevitable
- Grids, Supercomputers and Clouds are available to the scientific community

Hard Problems / Issues
- Hiding heterogeneity and complexity of leveraging different computing resources from users
- Efficiently submitting a large number of jobs at once and managing them
- Effective management and exploitation of all available computing resources

Our Approach
- High-Throughput Computing As a Service (HTCaaS) for scientific computing
- Meta-Job based automatic job split & submission (e.g., parameter sweeps)
- User-level job scheduling
- Pluggable interface to heterogeneous computing resources
- Application independent

System Architecture
- Powerful Meta-job description based on the OGF JSDL Parameter Sweep Extension Specification
- Agent-based multi-level scheduling & streamlined job dispatching
- Service-Oriented Architecture (SOA) based on WS-Interface

Utilizing Cloud for Dynamic & On-demand Resource Provisioning
- Constructing a hybrid scientific cloud infrastructure for HTC on the fly

Applications Support
- Virtual Screening (Docking)
 - A target protein of 3CL-pro of SARS with 1.1 Million chemical compounds
- 3D Visualization of Optimized Design Solution
 - On average 500 CPU utilized, Completed in 2.8 days, totally 2.6 years of computation

Current Status & Future Work
- Completed testing of integration with Grids, and Cloud
- Seamless integration with PLSI (Partnership & Leadership for the nationwide Supercomputing Infrastructure) in Korea
- System Scalability & Fault tolerance
- Improving User-level Job Scheduling

[Figure 2: HTCaaS System Architecture, Jobs & input/output data are managed by Job Manager and User Data Manager. Agents are dispatched from Agent Manager and process jobs in Grids, Supercomputers and Clouds]

[Figure 3: Job Submission & Execution Steps in HTCaaS]

[Figure 4: HTCaaS in the Cloud (Amazon EC2)]

[Figure 5: HTCaaS Target Applications]